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Mechanism of synchronization in a random dynamical system
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The mechanism of synchronization in the random Zaslavsky map is investigated. From the error dynamics
of two particles, the structure of phase space was analyzed, and a transcritical bifurcation between a saddle and
a stable fixed point was found. We have verified the structure of on-off intermittency in terms of a biased
random walk. Furthermore, for the generalized case of the ensemble of particles,a modified definitionof the
size of a snapshot attractor was exploited to establish the link with a random walk. As a result, the structure of
on-off intermittency in the ensemble of particles was explicitly revealed near the transition.
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I. INTRODUCTION

Yu, Ott, and Chen~YOC! studied a transition to chaos fo
a random dynamical system with the random Zaslavsky~RZ!
map which describes the motion of particles floating on
surface of a fluid whose flow velocity has complicated tim
dependence@1,2#; the state of the system is being sampled
discrete times. It was shown that variation of a parame
causes a transition from a situation where an initial cloud
particles is eventually distributed on a fractal to a situat
where the particles eventually clump at a single point, wh
location moves randomly in all time. In both situations t
random motion persists permanently, so the concept of
tractor is inappropriate. Hence, after transient times
elapsed, they took a snapshot of the particle distribution
the fluid surface and called ita snapshot attractor@1,3#.
They observed that the long-time particle distribution th
evolves from an initial smooth distribution exhibits an ‘‘e
treme form of temporally intermittent bursting’’ on the ch
otic side near the transition.

After YOC’s work, a type of intermittent behavior know
as on-off intermittency has been reported by Platt, Spei
and Tresser@4#. On-off intermittency refers to the situatio
where some dynamical variables exhibit two distinct state
their course of time evolution. One is the ‘‘off’’ state, whe
the variable remain approximately a constant and the oth
the ‘‘on’’ state, where the variable temporarily burst out
the off state. It has long been thought that the intermitt
behavior in YOC’s work belongs to ‘‘on-off intermittency
@5–13#. However, there has been some confusion about
because YOC did not investigate the RZ map from the p
spective of on-off intermittency. Indeed, in a Letter@1# and a
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subsequent review paper@2#, they analyzed the RZ map b
studying the largest Lyapunov exponent, the size of the sn
shot attractor, and the simple one-dimensional contract
expansion random map model to understand the intermit
transition behavior. But the essential geometrical struct
related to the mechanism of on-off intermittency is absen
their analysis. Besides Heagy, Platt, and Hammel~HPH!
commented that the snapshot attractor can undergo a for
intermittent behavior that is similar to on-off intermittenc
but the size distribution of the snapshot attractor compu
by YOC is quite different from the laminar phase distributio
they obtained in their random walk model@14#.

Meanwhile, Yang and Ding~YD! have studied a noise
driven uncoupled map lattice as a spatially extended sys
@15,16#. As a special case, they considered a map lat
where logistic map is located at each site uncoupled with
neighbors and each map driven by a common random v
able, which is regarded as a homogeneous background
their work, a similar transition which comes from the inst
bility of the synchronous motion of the ensemble was fou
However, on-off intermittency of the size evolution of th
snapshot attractor was proposed merely on the ground
laminar distribution obtained from numerical calculatio
since YD were unable to map the size evolution of the sn
shot attractor into a random walk. In this respect, their stu
was incomplete.

Recently synchronization in a pair of nonlinear syste
subjected to the common noise is revisited@6,17–19#. Gade
and Basu showed that this synchronization phenomen
indeed physical in certain cases, and for synchronization
those system the randomness is not vital@19#. Moreover, we
have shown that, in this kind of synchronization, the dis
bution of the random variable is vital and there exists on-
intermittency in the boundary of synchronization region@6#.
Also the intermittent behavior of the size of snapshot attr
tor was discussed briefly. Note that synchronization of r
dom dynamical systems has same meaning of the cha
transition in YOC’s work. This notion of sychronization i
©2001 The American Physical Society19-1
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analogous to the synchronization scheme1 proposed by
Pecora and Carrol, if we assume that the random variab
realized by a system as a drive system and random dyn
cal systems are regarded as response systems@20#.

In this paper, we explicitly show that the size evolution
the snapshot attractor really has the structure of on-off in
mittency contrary to the HPH’s comment. In Sec. II, w
briefly recapitulate the properties of the RZ map, and in S
III the mechanism of synchronization of two particles will b
revealed by using the error dynamics. In Sec. IV, we int
duce modified definition of the size of the snapshot attrac
for the case of ensemble of particles and explicitly show t
this modification leads to the structure of on-off interm
tency. Finally we present summary and brief discussion
Sec. V.

II. PROPERTIES OF THE RANDOM ZASLAVSKY MAP

A genericD-dimensional random map can be described

rn115Fjn
~rn!, ~1!

where rnPRD is column state vector andjn is a random
variable. So the mapFjn

is chosen randomly at each iteratio

according to some rule generatingjn . As it was introduced
in @1,2#, the RZ map describes a particle floating on an
compressible fluid. There is constant divergence transv
to the surface, and this divergence leads to contraction on
surface. And there exists vortical flow with complicated tim
dependence.rn5(xn ,yn)T ~the superscript ‘‘T’’ means trans-
pose operation! describes the position of a particle on th
surface att5nT, whereT is a constant sampling time.Fjn

is
given by

xn115xn1 f ~a!yn mod 2p,

yn115g~a!yn1k sin~xn111jn!, ~2!

where f (a)5(12e2a)/a, g(a)5e2a, and k and a are
control parameters. In specific,a gives rate of constant con
traction of surface,k stands for the parameter of vortic
flow, x is angle variable, andy is radial variable. On the othe
hand, random variablejn gives complicated time depen
dence of vortical flow, which represents fluid instabilities
low Reynolds numbers. Whenjn is absent, Eq.~2! is often
called the Zaslavsky map@21#. If we consider a stripuyu
,K0 whereK0.k(12e2a)21, one iteration maps this strip
into a narrow banduyu,K1,K0. Thus long-term behavior is
confined touyu,k(12e2a)21. Note that the Jacobian dete
minent of the map isg(a)5e2a. Therefore, the map is con
tracting by the factorg(a) after each iteration. In this pape
we will restrict our interest to the case ofk50.5 as studied
by YOC. Given a uniform distribution of the ensemble

1The scheme is based on the fact that certain chaotic sys
possess a self-synchronization property. A chaotic system is
synchronizing if it can be decomposed into subsystems: a d
subsystem and a stable response subsystem that synchronize
coupled with a common drive signal.
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particles on the surface~two dimensions!, we can find the
fractal distribution of particles fora,ac.0.31 after several
iterations. When we increasea close toac , snapshots show
almost one-dimensional fractal structure~very thin line struc-
ture!. And for the case ofa.ac , the snapshot collapses to
point ~zero dimension!, and particles move synchronously a
if they were a single particle.

III. SYNCHRONIZATION OF TWO PARTICLES

From now on, we will consider particles which satisfy E
~2!. Becausejn is describing the geometry of vortical flow a
t5nT and particles are sprinkled on the surface, they h
different initial conditions but feel common random drivin
jn . To investigate the synchronization of particles, we w
begin to study the dynamical behavior of two particles rat
than the motion of whole ensemble of particles.

Let us consider a replicarn85(xn8 ,yn8)
T which obeys the

Eq. ~2! as doesrn . To show the mechanism of synchroniz
tion, we consider the error dynamics~ED! of this system,
en5(un ,vn)T5rn82rn , which is the difference of two arbi-
trarily chosen particle’s positions. Then, the whole syst
zn5(xn ,yn ,un ,vn)T can be described by

rn115Fjn
~rn!,

en115Gfn
~en!, ~3!

whereGfn
is given by

un115un1 f ~a!vn mod 2p,

vn115g~a!vn12k cosS fn1
un11

2 D sinS un11

2 D ~4!

with @A mod B][(A1B/2 mod B)2B/2 and fn[xn11
1jn . Here, we have applied the mod operation according
the translational symmetry ofun in trigonometric functions
in Eq. ~4!. Note that the ED is driven byfn , which is the
sum of xn11 from Fjn

(rn) and random variablejn . There-

fore fn is not affected by the evolution ofen ; hence, trans-
formed systems have a so-called skew-product struc
mathematically@4#. Because the trajectory near the hype
planee50 is governed byfn , we will study properties of
the ED regarding the random dynamical variablefn as a
system parameterf which is constant during the evolution
before considering the whole four-dimensional system.

A. Error dynamics of two particles

We will investigate the local and global bifurcation stru
ture by finding the fixed points ofGf and its phase portrait in
order to reveal the underlying structure of the ED. When
impose the conditionsun115un and vn115vn on Gf ,
vnf (a) should be an integer multiple of 2p. If vn50,

cosS f1
un

2 D sinS un

2 D50. ~5!
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MECHANISM OF SYNCHRONIZATION IN A RANDOM . . . PHYSICAL REVIEW E64 036219
Then, there are two fixed points

e* 5S u*

v* D 5S 0

0D ,

e05S u0

v0D 55 S p22f

0 D for 0<f,p,

S 3p22f

0 D for p<f,2p.

~6!

Whenvnf (a) equals62p,64p, . . . , there is no additiona
fixed points near the transition pointac @22#. Theen11 near
the fixed pointe* is written as

en112e* 5J* ~f!~en2e* !1•••, ~7!

whereJ* (f)5(]Gf /]e)ue* is the Jacobian matrix evaluate
at e* . The two eigenvaluesl1* , l2* and the corresponding
eigenvectorse1 , e2 can be obtained by solving the eige
value problem of the matrixJ* (f). Pairs of eigenvalues give
a behavior along the eigendirection ofe6 , and characterize
the stability ofe* @23#. From Eq.~4!, the Jacobian matrix is
given by

J* ~f!5S 1 f ~a!

k cosf g~a!1k f~a!cosf D ~8!

and its eigenvalues are

l6* 5
1

2
$11g~a!1k f~a!cosf

6A~11g~a!1k f~a!cosf!224g~a!%. ~9!

Note thatl1* becomes unity forf5p/2 or 3p/2 irrespective
of a andk. In Fig. 1~b! the logarithmic oful6* u is plotted as
a function off for a50.3 andk50.5. We will use logarith-
mic of eigenvalues as a measure of the stability of a fix
point. Stability along the eigendirectione1 changes atf
5p/2 and f53p/2. For f,p/2 or f.3p/2, the fixed
point e* becomes a saddle point, at which the trajectory
attracted along thee2 eigendirection and repelled along th
e1 eigendirection, since lnul1* u.0, lnul2* u,0, andl6* is real.
For p/2,f,3p/2 and lnul1* u,0, the region off is divided
into two cases. The first case is when logarithmic of the t
eigenvalues are negative and different. In this region,e* be-
comes a stable node, which makes trajectories attra
along e1 to the fixed point, because lnul2* u,lnul1* u,0. For
the other case, when lnul1* u5lnul2* u,0, the two eigenvalues
are a complex-conjugated pair whose absolute values are
than 1. Therefore,e* becomes a stable spiral~stable foci!
and the trajectory will be attracted toe* rotating around the
fixed point.

Similarly for the other fixed pointe0, the Jacobian matrix
is

J0~f!5S 1 f ~a!

2k cosf g~a!2k f~a!cosf D , ~10!
03621
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and its eigenvalues are

l6
0 5

1

2
$11g~a!2k f~a!cosf

6A~11g~a!2k f~a!cosf!224g~a!%. ~11!

As in the above case ofe* , in Fig. 1~c!, lnul1
0 u is zero atf

5p/2, 3p/2 irrespective ofa andk. However, the situation
of stability is reversed. As shown in Figs. 1~b! and 1~c!, e*
becomes stable spiral or node~saddle! and e0 becomes
saddle ~stable spiral or node! at p/2,f,3p/2 (0,f
,p/2 or 3p/2,f,2p). As a result Fig. 1~a! shows a cor-
responding bifurcation diagram ande* ande0 exchange sta-
bility through transcritical bifurcation atf5p/2 and 3p/2,
respectively. Note thate* is constant but changes its stabili
with the variation off.

For some value off close top/2 or 3p/2, an attracting
closed orbit and a basin boundary between the stable fi
point and the closed orbit were found in the phase portr
Indeed, we have obtained a homoclinic bifurcation whi
can be found in a dissipative pendulum with constant torq
@24#. In our analysis, however, we have recognized that
existence of a basin boundary as a result of global bifur
tion does not affect our present results.

B. Synchronization and on-off intermittency

Our main interest in this section is the mechanism of
synchronization of two particles. Therefore, we will return
Eq. ~3!, wherefn changes for every iteration, and consid
the stability of synchronized states based on the study of
previous section. The synchronized state corresponds toe*

FIG. 1. ~a! Bifurcation diagram of the ED. In this figurevn is
omitted because the fixed point is always 0. The horizontal axi
f and its value is the same as in~b! and ~c!. In the diagram, solid
and dashed lines stand for stable and unstable fixed points, res
tively. ~b! and ~c! show the logarithm of the eigenvalues (l6* ,l6

0 )
of the Jacobian matrix ate* and e0, respectively. Vertical lines a
f5p/2,3p/2 stand for transition points of fixed points whe
lnul1* u and lnul1

0 u become 0.
9-3
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HWANG, KIM, RIM, KIM, AND PARK PHYSICAL REVIEW E 64 036219
in Gfn
. Becausee* 5(0,0) is a fixed point ofGfn

, the tra-

jectory starting fromz05(r0 ,e* ) belongs to a class of a
particular solution labeled by (r0 ,e* ) where r0 is an arbi-
trary chosen vector. This class of trajectories constitute
two-dimensional invariant subsetM embedded in the whole
four-dimensional phase space. Because Eq.~3! contains the
random variablefn , it will fill the whole hyperplane satis-
fying e5e* andM will be identical to the hyperplane. W
say a subspace isinvariant if a trajectory starting in the sub
space always remains in the same subspace.

Let us consider a situation where a trajectory, which
initially located outsideM, andzn happens to be located i
the vicinity of M for somen. Whetherzn11 will be attracted
or repelled fromM is determined by the Jacobian matrix
subsystemGfn

at e* given by Eq.~7!. Equation~7! can be
mapped onto a random walk when we take the logarithm
the absolute value on each side of the equation as follow

lnuen11u5 lnuJ* ~fn!•ênu1 lnuenu. ~12!

Note that we have divideden into uenu and unit vectorên
5(cosun ,sinun)

T, whereun5tan21(vn /un). Then, one can
regard lnuenu as thenth displacement of the random walk an
lnuJ* (fn)•ênu as its (n11)th step width. The asymptoti
behavior of the trajectory nearM is determined by the av
erage of the step width, i.e., the bias of random walk. T
bias is called transverse the Lyapunov exponenth' , which
measures the global stability ofM, defined as

h'5E dfdu r~f,u!lnuJ* ~f!•ê~u!u, ~13!

wherer(f,u) is probability distribution off andu.
If h',0—i.e., the average of the step width is negative

the displacement of the random walk will decrease in tim
and uenu will approach zero in proportion toenh'. Therefore
M is transeversly stable, and the whole trajectories, wh
initially start from outside ofM, will be attracted toM
asymptotically. Ifh'.0, the small distance between the tr
jectory andM will increase exponentially and at last will b
affected by nonlinear term, which will reinject the trajecto
to the neighborhood ofM. In this caseM is called transev-
ersly unstable. The transition from the former case to la
one according to the variation of system paramter has b
investigated by others and is called ‘‘blowout’’ bifurcatio
@25–27#.

Practically we can calculateh' as follows:

enh'5 lim
n→`
A un

21vn
2

Au0
21v0

2

5 lim
n→`

uJ* ~fn!J* ~fn21!•••J* ~f0!•ê0u

→h'5 lim
n→`

1

n (
i

lnuJ* ~f i !•êi u. ~14!
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h' vs a graph is shown in the Fig. 2 which coincides wi
previous work@1,2#.

It is also known that whenh' is slightly positive, some
dynamical variables of the system can exhibit an extre
type of temporal intermittent bursting behavior: on-off inte
mittency @14,28#. The essential ingredients of on-off inte
mittency are that~a! a hyperplane should contain an invaria
subset and~b! the trajectory near the hyperplane shows a
ditive random walk in the logarithmic domain depending
the local stability of the hyperplane along the transverse
rection of M @7,28#. The trajectory in the large negativ
value in the logarithmic domain will be shown approx
mately as a constant in real scale, and corresponds to
‘‘off’’ state. In the other case a positive or small negativ
value in the logarithmic domain corresponds the to ‘‘o
state. In the pairs of particles, we have shown thatM is the
hyperplane containing an invariant subset, and lnuenu exhibits
random walk nearM according to the the stability ofJ* .
Therefore we can conclude that there exists on-off interm
tency. On the other hand, according to a result based on
study of a random walk, it is known that the probability
laminar length~L! is proportional toL23/2e2L/Ls, whereLs is
the length at which the systematic drift due to the bias a
the diffusion spread of random variable without bias beco
comparable@5,7,14#. Figure 3 shows characteristic scaling
on-off intermittency whichP(L) scales asL23/2.

In this section, we have shown the mechanism in the s
chronization of two particles using skew-product structu
and a stability analysis ofM and verified the structure o
on-off intermittency.

IV. SYNCHRONIZATION OF THE ENSEMBLE
OF N PARTICLES

In this section, we will study the behavior of an ensemb
of N particles. As described in the previous section, on-

FIG. 2. h'~solid line! andhs~circle! vs a whenk50.5.
9-4
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MECHANISM OF SYNCHRONIZATION IN A RANDOM . . . PHYSICAL REVIEW E64 036219
intermittency can be characterized by a biased random w
To establish the link with a random walk with the size ev
lution of the snapshot attractor, let us consider the rela
between the ED and the size of the snapshot attractor. Y
considered the size of the snapshot attractorSn as the rms
~root mean square! value of distance from the center of ma
of the ensemble as

Sn5A1

N (
i 51

N

~yn
i 2 ȳn!2, ~15!

whereyn
i are coordinates of thei th particle (i 51,2, . . . ,N)

and ȳn5N21( i yn
i . However,ȳn is not so good a choice to

establish the random walk relation betweenSn and Sn21.
Since ȳn is defined as the average ofyn

i and Sn
2 can be ex-

pressed byȳn and (yn
¯ )2, it is difficult to obtainSn21 from

the definition ofSn in the limit of Sn→0. In order to use the
result from the previous section, we consider the modifi
measureS̃n which is the average length not from the cen
of the ensembleȳn but from an arbitrarily chosen referenc
particle positionyn

r in the ensemble. Our modified measure
defined as

S̃n5A1

N (
i

~yn
i 2yn

r !25A1

N (
i

~vn
i !2, ~16!

which is the rms distance in they direction, wherevn
i 5yn

i

2yn
r . The behavior ofSn andS̃n can be seen in Fig. 4 for th

caseN51000, a50.3, andk50.5. Figure 4~b! shows that
the amplitudes are slightly different, but bursting and lamin
behaviors coincide. Moreover, as shown in Fig. 4~a!, asSn

FIG. 3. Laminar distribution for two particles. The horizont
axis is the length of laminar in a logarithmic scale. The vertical a
is the logarithm of the probability of the laminar length in arbitra
units. The solid circle means the probability fora50.27 and solid
triangle for a50.3. The gray straight line has a23/2 slope. The
case ofa50.27 show an exponential shoulder which is typica
shown in on-off intermittency models.
03621
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approaches 0,S̃n becomes identical toSn . ThereforeS̃n may
be replaced withSn when one investigates the size of th
snapshot attractor near the synchronization transition po
Since our measureS̃n can be decomposed into the rms val
of the ED variablevn

i , the relation betweenS̃n11 andS̃n can
be obtained from the relation betweenvn11 and vn . In the
measure ofS̃n , the existence of the hyperplane containi
the invariant set is guaranteed by the invariant hyperplan
the two-particle system—that is, the hyperplane stands
the state when all the particles move synchronously.

A. Uncoupled map lattice with homogeneous background

We analyzed the one-dimensional simple case of glob
coupled logistic maps which was studied by YD@15,16#. Let
us consider the system ofN particles. They are located a
yn

1 , . . . ,yn
N , and their dynamics is described by

yn11
i 5znyn

i ~12yn
i !, ~17!

where zn5ajn1b and jn is a random variable uniformly
distributed in the interval (0,1#. Note that this system is iden
tical to the model studied by HPH@14# to explain on-off
intermittency. Whena51 is fixed andb is varied, they re-

s

FIG. 4. ~a! Horizontal and vertical axes areSn and S̃n in the
logarithmic scale, respectively. Both axes are the logarithmic sc
Solid dots are data from 1000 particles whena50.3 and grayed
line is the diagonal line. Data close to zero lie on the diagonal l

and that meansSn and S̃n become identical.~b! shows the time

series ofSn and S̃n for the same period. Although amplitudes a
slightly different from each other, the timings of the bursting a
laminar periods coincide.
9-5
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HWANG, KIM, RIM, KIM, AND PARK PHYSICAL REVIEW E 64 036219
ported that the transition from the nonsynchronous stat
the synchronous one is found atbc52.82, and whenb
.bc , the size evolution of the snapshot attractor exhib
on-off intermittency. We will explain this transition behavio
with our measureS̃n and the ED. If we consider the differ
encevn

i betweenyn
i andyn

r such that

vn11
i 5yn11

i 2yn11
r 5znvn

i ~122yn
r 2vn

i !, ~18!

then,

S̃n11
2 5

1

N (
i 51

N

~vn11
i !25

1

N (
i 51

N

zn
2~vn

i !2~122yn
r 2vn

i !2.

~19!

If we consider the limitvn
i →0 and neglect higher orde

terms ( i(vn
i )3 and ( i(vn

i )4 near the transition region, Eq

~19! becomesS̃n11.uzn(122yn
r )uS̃n . Then, we have ob-

tained the following relation by taking the logarithm on bo
sides:

ln S̃n115 lnuzn~122yn
r !u1 ln S̃n . ~20!

This relation can be interpreted such that the size evolu
of the snapshot attractor in the logarithmic domain is g
erned by the random walk with a step size lnuzn(122yn

r )u.
Similarly to Eq.~13! the transverse Lyapunov exponent is

h'5E dy r~z,y!lnuz~122y!u, ~21!

wherer(z,y) is the invariant probability density. This lead
to the same transition point which is calculated by YD. O
should notice that the random variable is multipliedcom-
monly to every particle in the summation of Eq.~19!, and
this leads to on-off intermittency ofS̃n .

B. RZ map

In the case of the RZ map, we consider the case ofvn
i

.0. From Eq.~4!,

vn11
i 5g~a!vn

i 12k cos~fn1un11
i /2!sin~un11

i /2!

5g~a!vn
i 1k cosfnsin$@cotun

i 1 f ~a!#vn
i %

22k sinfnsin2$@cotun
i 1 f ~a!#vn

i /2%

.$g~a!1k cosfn@cotun
i 1 f ~a!#%vn

i 1O„~vn
i !2

…,

~22!

where cotun
i 5un

i /vn
i andun11

i 5@cotun
i 1f(a)#vn

i . Therefore,
03621
to

s

n
-

e

S̃n11
2 5

1

N (
i

@vn11
i #2

.
1

N (
i

$g~a!1k cosfn@cotun
i 1 f ~a!#%2~vn

i !2

1
1

N (
i

O@~vn
i !3#. ~23!

Then, Eq.~23! has a different result compard with the pr
vious case, because the summation in Eq.~23! does not have
a common driving. As a result, it seems that one could
deduceS̃n from the right side. However, we have recogniz
the crucial property that the value of cotun

i for all i becomes
identical whenvn

i .0, which will be explained in detail in
the following. That property means that the whole partic
align in a line passing through the reference particle, beca
tanun

i is the slope of a line connecting position of the refe
ence particle to that of thei th particle. In Sec. III, we have
shown thate* becomes a saddle or a spiral for mostf.
Whene* is a saddle, particles are repelled along the unsta
direction. However, sinceu lnul1* uu,ulnul2* uu, particles are at-
tracted fast alonge2 and repelled slowly alonge1 . There-
fore, particles are scattered around along the unstable ei
direction after a few iteration, and become a narrow str
along a straight line from the reference particle. Whene* is
a spiral, we have shown that the particles arounde* rotate
around the fixed point without changing the shape of dis
bution. Figure 5 shows the behavior of particles neare* for
constantf whene* is a saddle or spiral. After particles ar
scattered along a line, the Jacobian matrix maps the
passing through the position of the reference particle to
other line passing through that of the reference partic
Therefore, we could approximate cotun5cotun

15cotun
2

5•••5cotun
N for S̃n.0.

This result is consistent with the finding of YOC that th
Lyapunov dimension becomes unity on the chaotic side
the transition. This represents that the ensemble ofN par-
ticles is embedded in a one-dimensional manifold. Also fro
the evolution of the uniformly distributed ensemble, we ha
found that near the fixed point all the particles are aligned
a line from the position of the reference particle as shown
Fig. 6. Therefore, we can write as follows:

S̃n115ug~a!1k cosfn@cotun1 f ~a!#uS̃n . ~24!

By taking the logarithm on both sides, we find

ln S̃n115 lnug~a!1k cosfn@cotun1 f ~a!#u1 ln S̃n .
~25!

As a result, Eq.~25! shows a random walk process in th
logarithmic domain. The transition point of the size of th
snapshot attractor is determined by the transverse Lyapu
exponenths , which is the average step size in Eq.~25!, as
follows:
9-6
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hs5 lim
n→`

1

n (
i 51

n

lnug~a!1k cosfn@cotun1 f ~a!#u. ~26!

In Fig. 2, thehs , which is numerically obtained by using th
original map~2!, shows the same result ofh' which is cal-
culated in the case of two particles. In this case the invar
hyperplane is a subspace satisfyingvn

i 50 andun
i 50 for all

i. By the hyperplane and the previous random walk relat
the existence of on-off intermittency ofS̃n is verified. Fur-
thermore, in the plot of the laminar distribution ofS̃n , the
distribution is not affected by the number of particles a
shows the same scaling of the two-particle case, as dep
in Fig. 7, which shows the consistency of our results.

V. SUMMARY AND DISCUSSION

In this paper, we have considered the mechanism of s
chronization in a random dynamical system. As a spec
example, we have investigated the random Zaslavsky ma
detail. From the ED of two particles, we have studied
bifurcation structure of the invariant manifold and foun
transcirtical bifurcation between the saddle and stable no
Our results are consistent with those of YOC, but are m
explicit in the perspective of on-off intermittency structur
In the case of an ensemble of many particles in the rand
Zaslavsky map, the long-standing problem to map the s

FIG. 5. Evolution of an ensemble of 5000 particles for const
f when a50.3 andk50.5. Left columns of the three graphs a
initial evolution of the ensemble withf50, where the fixed point
at e* is a saddle. We start with random initial points distribut
within 20.01,u0 /p,0.01 and20.01,v0,0.01 uniformly in or-
der to show the behavior near the saddle. From upper to lo
graphs, the shape of the ensemble stretches along the uns
manifold as time flows. In contrast to the left ones, the right c
umns are that of the ensemble whenf5p and the fixed point is
spiral. The distribution, which is initially located in a ring, rotate
around the origin with contracting its area. Note that in these gra
coordinates areun

i and vn
i /p, i.e., relative displacement from th

reference particle.
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evoultion of the snapshot attractor into a random walk is
last resolved by exploiting our modified definition of the si
of the snapshot attractor, which is slightly different from t
previously proposed one. From this success of mapping o
a random walk, we have obtained a qualitative understand
why this manifestation of intermittency has the same criti

t

er
ble
-

s

FIG. 6. Snapshot of 5000 particles whena50.3 andk50.5.
Initially, particles are distributed in the region20.5,u0,0.5 and
20.5,v0,0.5. ~b!, ~c!, and~d! show a fractal distribution of par-
ticles whenn52080, 2088, and 2092, respectively.~a! shows a
small area of the snapshot attractor forn52080,2081, . . . ,2099 in
the same graph. In this region particles are aligned in a line for e
instant time when particles are close to the origin. Each line sta
for a snapshot for a given instant time. Note that in these gra
coordinates areun

i andvn
i , i.e., relative displacement from the re

erence particle.

FIG. 7. Probability distributionP(L) of laminar lengthL when
a50.3 andk50.5. We choose the threshold of an event as 1024.
The unit of probability is arbitrary.
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exponent, which is found from numerical simulation as th
of the typical on-off intermittency. We emphasize that th
mapping becomes possible when the ED variables are
tributed on a line along the unstable direction of the sad
For further investigation, it will be interesting to study oth
systems that seem to be difficult to map onto the form o
random walk.
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