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Mechanism of synchronization in a random dynamical system
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The mechanism of synchronization in the random Zaslavsky map is investigated. From the error dynamics
of two particles, the structure of phase space was analyzed, and a transcritical bifurcation between a saddle and
a stable fixed point was found. We have verified the structure of on-off intermittency in terms of a biased
random walk. Furthermore, for the generalized case of the ensemble of pagictesified definitiorof the
size of a snapshot attractor was exploited to establish the link with a random walk. As a result, the structure of
on-off intermittency in the ensemble of particles was explicitly revealed near the transition.
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I. INTRODUCTION subsequent review papg2], they analyzed the RZ map by
studying the largest Lyapunov exponent, the size of the snap-
Yu, Ott, and CherfYOC) studied a transition to chaos for shot attractor, and the simple one-dimensional contraction-
a random dynamical system with the random Zaslay§&) expansion random map model to understand the intermittent
map which describes the motion of particles floating on theransition behavior. But the essential geometrical structure
surface of a fluid whose flow velocity has complicated timerelated to the mechanism of on-off intermittency is absent in
dependencél,2]; the state of the system is being sampled attheir analysis. Besides Heagy, Platt, and HamittdPH)
discrete times. It was shown that variation of a parametecommented that the snapshot attractor can undergo a form of
causes a transition from a situation where an initial cloud ointermittent behavior that is similar to on-off intermittency,
particles is eventually distributed on a fractal to a situationbut the size distribution of the snapshot attractor computed
where the particles eventually clump at a single point, whoséy YOC is quite different from the laminar phase distribution
location moves randomly in all time. In both situations thethey obtained in their random walk moddl4].
random motion persists permanently, so the concept of at- Meanwhile, Yang and DingYD) have studied a noise-
tractor is inappropriate. Hence, after transient times hadriven uncoupled map lattice as a spatially extended system
elapsed, they took a snapshot of the particle distribution o15 16. As a special case, they considered a map lattice
the fluid surface and called & snapshot attractof1,3].  \yhere logistic map is located at each site uncoupled with its
They observed t_ha_lt_ the Iong-time _par;icle dis_tr?bution thatneighbors and each map driven by a common random vari-
evolves from an initial sm_ooth d_|str|but|on _exhlblts an “ex- able, which is regarded as a homogeneous background. In
treme form of temporally intermittent bursting” on the cha- their work, a similar transition which comes from the insta-

otic side near the transition. . .
, . . . bility of the synchronous motion of the ensemble was found.
After YOC's work, a type of intermittent behavior known |However, on-off intermittency of the size evolution of the

as on-off intermittency has been reported by Platt, SpeigeSna shot attractor was proposed merelv on the around of

and Tressef4]. On-off intermittency refers to the situation P distributi bt P z f v | Ig lati

where some dynamical variables exhibit two distinct states ir@mmar Istribution obtained from humericalcalcufations
since YD were unable to map the size evolution of the snap-

their course of time evolution. One is the “off” state, where X _ )
the variable remain approximately a constant and the other {10t attractor into a random walk. In this respect, their study

the “on” state, where the variable temporarily burst out of Was incomplete. o _ _

the off state. It has long been thought that the intermittent Recently synchronization in a pair of nonlinear systems
behavior in YOC's work belongs to “on-off intermittency” Subjected to the common noise is revisifédl7-19. Gade
[5—13. However, there has been some confusion about thignd Basu showed that this synchronization phenomena is
because YOC did not investigate the RZ map from the per'mdeed physical in certain cases, and for synchronization of

spective of on-off intermittency. Indeed, in a Letfét and a  those system the randomness is not Vit&l]. Moreover, we
have shown that, in this kind of synchronization, the distri-

bution of the random variable is vital and there exists on-off

*Electronic address: zzamong@physics3.sogang.ac.kr intermittency in the boundary of synchronization regjéi
"Electronic address: ibkim@physics3.sogang.ac.kr Also the intermittent behavior of the size of snapshot attrac-
*Electronic address: rim@phys.paichai.ac.kr tor was discussed briefly. Note that synchronization of ran-
8Electronic address: chmkim@mail.paichai.ac.kr dom dynamical systems has same meaning of the chaotic
IElectronic address: yjpark@ccs.sogang.ac.kr transition in YOC’s work. This notion of sychronization is
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analogous to the synchronization schénmoposed by particles on the surfacéwo dimensions we can find the
Pecora and Carrol, if we assume that the random variable #gactal distribution of particles for<<«a,=0.31 after several
realized by a system as a drive system and random dynamiterations. When we increaseclose toa., snapshots show
cal systems are regarded as response sydt20hs almost one-dimensional fractal structivery thin line struc-

In this paper, we explicitly show that the size evolution of ture). And for the case ofr> «, the snapshot collapses to a
the snapshot attractor really has the structure of on-off interpoint (zero dimensiop and particles move synchronously as
mittency contrary to the HPH's comment. In Sec. I, we if they were a single particle.
briefly recapitulate the properties of the RZ map, and in Sec.

[1l the mechanism of synchronization of two particles will be lIl. SYNCHRONIZATION OF TWO PARTICLES

revealed by using the error dynamics. In Sec. IV, we intro-

duce modified definition of the size of the snapshot attractor From now on, we will consider particles which satisfy Eq.
for the case of ensemble of particles and explicitly show that2). Becaus&, is describing the geometry of vortical flow at
this modification leads to the structure of on-off intermit-t=nT and particles are sprinkled on the surface, they have
tency. Finally we present summary and brief discussion irdifferent initial conditions but feel common random driving

Sec. V. &, . To investigate the synchronization of particles, we will
begin to study the dynamical behavior of two particles rather
Il. PROPERTIES OF THE RANDOM ZASLAVSKY MAP than the motion of whole ensemble of particles.

) ) ) ] Let us consider a replice,=(x/,,y,)" which obeys the

A genericD-dimensional random map can be described a¥q. (2) as does ,. To show the mechanism of synchroniza-
Fo=F, (1) 1) tion, we consider the error dynami¢gD) of this system,
LT TG n e,=(Un,v)"=r,—r,, which is the difference of two arbi-

trarily chosen particle’s positions. Then, the whole system

wherer,eRP is column state vector and, is a random T :
vp) ' can be described by

variable. So the map;_is chosen randomly at each iteration “n™~ (Xn Yn,Un,

according to some rule generatigg. As it was introduced

in [1,2], the RZ map describes a patrticle floating on an in-
compressible fluid. There is constant divergence transverse
to the surface, and this divergence leads to contraction on the €ni1= Gaﬁn(en)’ &)
surface. And there exists vortical flow with complicated time

dependence.,=(X,,yn)' (the superscript T” means trans- WhereG,, is given by

pose operationdescribes the position of a particle on the

rn+l:F§n(rn)y

surface at=nT, whereT is a constant sampling timl§§n is Ups g =Un+ f(@)v, mod o)
given by
u fu
Xn+1=Xp+ f(@)y, mod 2, Un+1=9(a)vn+2kcos< bt r12+1>SI r'|2+1) @
Yn+1=9(@)YntKsin(Xq1+ &), @ with [A mod B]=(A+B/2 mod B)—B/2 and ¢ =X 1

where f(a)=(1—e “)/a, g(a)=e ¢, andk and « are +&,. Here,_we have applied thg qu operatiqn according to
control parameters. In specifia, gives rate of constant con- the translational symmetry af, in trigonometric functions
traction of surfacek stands for the parameter of vortical I EQ. (4). Note that the ED is driven by, , which is the
flow, x is angle variable, andis radial variable. On the other SUm 0fx,. from F (r,) and random variablg,. There-
hand, random variable, gives complicated time depen- fore ¢, is not affected by the evolution &, ; hence, trans-
dence of vortical flow, which represents fluid instabilities atformed systems have a so-called skew-product structure
low Reynolds numbers. Whe#y, is absent, Eq(2) is often  mathematically{4]. Because the trajectory near the hyper-
called the Zaslavsky mafR1]. If we consider a strigy]| planee=0 is governed byp,, we will study properties of
<K, whereKy,>k(1—e %) "1, one iteration maps this strip the ED regarding the random dynamical variakfg as a
into a narrow bandly| <K, <K. Thus long-term behavior is system parametep which is constant during the evolution,
confined to]y| <k(1—e~ %) . Note that the Jacobian deter- before considering the whole four-dimensional system.
minent of the map ig(«)=e" *. Therefore, the map is con-

tracting by the factog(«) after each iteration. In this paper, A. Error dynamics of two particles

we will restrict our interest to the case k¥ 0.5 as studied

by YOC. Given a uniform distribution of the ensemble of We will investigate the local and global bifurcation struc-

ture by finding the fixed points @&, and its phase portrait in
order to reveal the underlying structure of the ED. When we

The scheme is based on the fact that certain chaotic systeniglPose the conditionsl,;=u, and v,,1=v, on G,
possess a self-synchronization property. A chaotic system is selt2nf(a) should be an integer multiple of2 If v,=0,
synchronizing if it can be decomposed into subsystems: a drive
subsystem and a stable response subsystem that synchronize when COS( b+ ﬁ
coupled with a common drive signal. 2

. un
sm(?) =0. (5)
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Then, there are two fixed points T "~
. (u*) 0 N
e = = y N
v* 0 e . N (@
= N
T2 o 0=ge ™~
or = v, M
o [u 0 o
= = -
N v? 3m—2¢ ¢ < b2 © _ ! '
= . T —— =
0 or wT=¢<2w *i . = - )
= e ~
Whenv ,f(a) equalst2m,+ 44, ..., there is no additional R = : it
fixed points near the transition point [22]. Thee, ., near T e S
the fixed pointe* is written as < o0 = — (c)
=] S o
Err1— € =T (P)(6 =€)+ o, (7) 5 w2 R o
whereJ* (¢) = (9G4 /d€)| is the Jacobian matrix evaluated (0

at €. The two eigenvalued” , \* and the corresponding
eigenvectore, , e_ can be obtained by solving the eigen-

value prc_)blem of the m"?‘”ix* (.d))' .Pairs of eigenvalues g_ive ¢ and its value is the same as(ip) and(c). In the diagram, solid
a behav!(?r along the eigendirection ef, and Qharacte.rlz.e and dashed lines stand for stable and unstable fixed points, respec-
the stability ofe* [23]. From Eq.(4), the Jacobian matrix is  tiyely. (b) and(c) show the logarithm of the eigenvalues*(,\°)
given by of the Jacobian matrix a* and €”, respectively. Vertical lines at
1 f(a) ¢=m2,3m/2 0stand for transition points of fixed points where
J*(¢)= ®) In]\%| and If\Y| become 0.
kcos¢p g(a)+kf(a)cose

FIG. 1. (a) Bifurcation diagram of the ED. In this figure, is
omitted because the fixed point is always 0. The horizontal axis is

and its eigenvalues are
and its eigenvalues are

x°=1{1+( —kf
+=511+9(a)—kf(a)cosd

1
x§=§{1+g(a)+ kf(a)cose

+J(1+g(a)—kf(a)cosp)’—4g(a)}. (11)

As in the above case @, in Fig. 1(c), In\’| is zero at¢
Note that\* becomes unity foip= /2 or 3w/2 irrespective = 7/2, 3m/2 irrespective ofx andk. However, the situation
of @ andk. In Fig. 1(b) the logarithmic ofi\* | is plotted as  of stability is reversed. As shown in Figs(bl and Xc), e*
a function of¢ for a=0.3 andk=0.5. We will use logarith- becomes stable spiral or nodeaddl¢ and € becomes
mic of eigenvalues as a measure of the stability of a fixedsaddle (stable spiral or nodeat 7/2<¢<3w/2 (0<¢
point. Stability along the eigendirectioa, changes atp </2 or 3w/2< $p<2). As a result Fig. (a) shows a cor-
=m/2 and ¢=3m/2. For p<m/2 or ¢>3x/2, the fixed responding bifurcation diagram aedl ande® exchange sta-
point €* becomes a saddle point, at which the trajectory ishility through transcritical bifurcation ap= w/2 and 37/2,
attracted along the_ eigendirection and repelled along the respectively. Note tha* is constant but changes its stability
e, eigendirection, since |N%|>0, In]A*|<0, and\* is real.  with the variation of¢.
For 7/2< ¢<3/2 and If\* |<0, the region ofp is divided For some value ofb close tow/2 or 37/2, an attracting
into two cases. The first case is when logarithmic of the twcelosed orbit and a basin boundary between the stable fixed
eigenvalues are negative and different. In this regésnpe-  Point and the closed orbit were found in the phase portrait.
comes a stable node, which makes trajectories attractdideed, we have obtained a homoclinic bifurcation which
along e, to the fixed point, because [k |<In]\*|<0. For ~ can be found in a Q|SS|pat|ve pendulum with constant torque
the other case, when [if|=In|\* |<0, the two eigenvalues [24]. In our analysis, however, we have recognized that the

are a complex-conjugated pair whose absolute values are le€¥iStence of a basin boundary as a result of global bifurca-
than 1. Thereforeg* becomes a stable spirétable focj 10N does not affect our present results.
and the trajectory will be attracted & rotating around the

*\(1+g(a)+kf(a)cosp)®—4g(a)}.  (9)

fixed point. B. Synchronization and on-off intermittency
~ Similarly for the other fixed poiné®, the Jacobian matrix  Our main interest in this section is the mechanism of the
IS synchronization of two particles. Therefore, we will return to

Eqg. (3), where ¢,, changes for every iteration, and consider
(10) the stability of synchronized states based on the study of the
previous section. The synchronized state correspond@? to

1 f(a)

0 _
T(e)= —kcos¢ g(a)—kf(a)cosed)’
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in G¢n. Becauses* =(0,0) is a fixed point OG%' the tra-
jectory starting fromzy=(ry,€*) belongs to a class of a
particular solution labeled byr§,e*) wherer is an arbi-
trary chosen vector. This class of trajectories constitutes
two-dimensional invariant subsatt embedded in the whole
four-dimensional phase space. Because (Bgcontains the
random variablep,, it will fill the whole hyperplane satis-
fying e=¢e* and M will be identical to the hyperplane. We
say a subspace invariantif a trajectory starting in the sub-
space always remains in the same subspace.

Let us consider a situation where a trajectory, which is
initially located outsideM, andz, happens to be located in
the vicinity of M for somen. Whetherz, , ; will be attracted
or repelled fromM is determined by the Jacobian matrix of
subsystenG¢n at € given by Eq.(7). Equation(7) can be
mapped onto a random walk when we take the logarithm o
the absolute value on each side of the equation as follows:

In|€ys 1| =1N|J* () - €] +Injey|. (12)

Note that we have dividee, into |e,| and unit vectore,
=(cos#b,,sinb,)", where §,=tan (v, /u,). Then, one can
regard Ine,| as thenth displacement of the random walk and
InjJ* (¢,,)- &, as its (i+1)th step width. The asymptotic
behavior of the trajectory nea¥1 is determined by the av-
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FIG. 2. h (solid line) andhg(circle) vs @ whenk=0.5.

h, vs « graph is shown in the Fig. 2 which coincides with
previous work{1,2].

It is also known that whem, is slightly positive, some
dynamical variables of the system can exhibit an extreme
type of temporal intermittent bursting behavior: on-off inter-

erage of the step width, i.e., the bias of random walk. Thignittency [14,28. The essential ingredients of on-off inter-

bias is called transverse the Lyapunov exportent which
measures the global stability d#1, defined as

hffd¢d6p<¢,0>lnlJ*<¢)~é<e>|, (13

wherep(¢, 6) is probability distribution of¢ and 6.

If h, <0—i.e., the average of the step width is negative—
the displacement of the random walk will decrease in time
and|e,| will approach zero in proportion te"":. Therefore
M is transeversly stable, and the whole trajectories, whic
initially start from outside of M, will be attracted toM
asymptotically. Ifh, >0, the small distance between the tra-
jectory andM will increase exponentially and at last will be
affected by nonlinear term, which will reinject the trajectory
to the neighborhood oM. In this caseM is called transev-

ersly unstable. The transition from the former case to lattef

mittency are thata) a hyperplane should contain an invariant
subset andb) the trajectory near the hyperplane shows ad-
ditive random walk in the logarithmic domain depending on
the local stability of the hyperplane along the transverse di-
rection of M [7,28]. The trajectory in the large negative
value in the logarithmic domain will be shown approxi-
mately as a constant in real scale, and corresponds to the
“off” state. In the other case a positive or small negative
value in the logarithmic domain corresponds the to “on”
State. In the pairs of particles, we have shown théts the

rpyperplane containing an invariant subset, ané,|rexhibits

random walk nearM according to the the stability of*.
Therefore we can conclude that there exists on-off intermit-
tency. On the other hand, according to a result based on the
study of a random walk, it is known that the probability of
laminar length(L) is proportional to ~ %%~ 'ts whereL , is

he length at which the systematic drift due to the bias and

one according to the variation of system paramter has beetﬁle diffusion Spread of random variable without bias become

investigated by others and is called “blowout” bifurcation
[25-27.
Practically we can calculate, as follows:

/ uﬁ+vﬁ
\/u2+vg

0

e = |im

n—o

im [ 3% () I* (dn_1)- - - I* (o) - &

=1
n

1 .
—>hL=IimﬁZi In|J* (¢)-&|. (14)

n—oe

comparablé5,7,14. Figure 3 shows characteristic scaling of
on-off intermittency whichP(L) scales ag ~ %2,

In this section, we have shown the mechanism in the syn-
chronization of two particles using skew-product structure
and a stability analysis ofM and verified the structure of
on-off intermittency.

IV. SYNCHRONIZATION OF THE ENSEMBLE
OF N PARTICLES

In this section, we will study the behavior of an ensemble
of N particles. As described in the previous section, on-off
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FIG. 3. Laminar distribution for two particles. The horizontal ©A™ mt ml m M “M “M mm “m ﬂ
axis is the length of laminar in a logarithmic scale. The vertical axis 0.0 1 (b)

is the logarithm of the probability of the laminar length in arbitrary
units. The solid circle means the probability fer0.27 and solid 2y
triangle for «=0.3. The gray straight line has-a3/2 slope. The - \
case ofa=0.27 show an exponential shoulder which is typically o 5000 10000 15000 20000
shown in on-off intermittency models. n

1.0 |

. . . . FIG. 4. (a) Horizontal and vertical axes a®, and'S, in the
intermittency can be characterized by a biased random Wa”fC)garithmic scale, respectively. Both axes are the logarithmic scale.

lTO. eStaE“Eh the I|n|r<1 with a randc:m walk Wlt%theslze FV.O'SoIid dots are data from 1000 particles wher 0.3 and grayed
ution of the snapshot attrgctor, et us consider the re atlorI\ne is the diagonal line. Data close to zero lie on the diagonal line
between the ED and the size of the snapshot attractor. Yog’nd that means, and%, become identical(b) shows the time
considered the size of the snapshot attra8plas the rms

(root mean squajevalue of distance from the center of mass series ofS, andS, for the same period. Although amplitudes are
of the ensemble as slightly different from each other, the timings of the bursting and

laminar periods coincide.

N
1 A ~ ~
Sh= 1\ /N ;1 (Y'n—Yn)z- (15) approaches (5, becomes identical t§,,. ThereforeS, may

be replaced withS, when one investigates the size of the
snapshot attractor near the synchronization transition point.

Since our measurs, can be decomposed into the rms value

of the ED variablev!,, the relation betweeB, . ; andS, can

be obtained from the relation betweep,, andv,. In the

— — ! measure of5,, the existence of the hyperplane containing
pressed by, and )%, it is difficult to obtainS, ; from  the invariant set is guaranteed by the invariant hyperplane of
the definition ofS, in the limit of S,—0. In order to use the  the two-particle system—that is, the hyperplane stands for
result from the previous section, we consider the modifiedhe state when all the particles move synchronously.
measureS, which is the average length not from the center

of the ensemblg,, but from an arbitrarily chosen reference  A. Uncoupled map lattice with homogeneous background
particle positiory;, in the ensemble. Our modified measure is
defined as

Whereyin are coordinates of thigh particle {=1,2,... N)

and%z NflEiyL. However,y,, is not so good a choice to
establish the random walk relation betweSp and S, _;.

Sincey, is defined as the average gf and S can be ex-

We analyzed the one-dimensional simple case of globally
coupled logistic maps which was studied by YIb,16. Let
us consider the system & particles. They are located at

3 = \/% S (yl—yn)2= \/% > ()2, (16)  Yn.---Yh,and their dynamics is described by
i i

Yhi1=ZYh(1—yh), 17)

which is the rms distance in thedirection, wherev| =y

—y'. The behavior 08, andS, can be seen in Fig. 4 for the wherez,=a¢,+b and &, is a random variable uniformly
caseN=1000, «=0.3, andk=0.5. Figure 4b) shows that distributed in the interval (0J1 Note that this system is iden-
the amplitudes are slightly different, but bursting and laminattical to the model studied by HPIHL4] to explain on-off
behaviors coincide. Moreover, as shown in Fi@4asS, intermittency. Whera=1 is fixed andb is varied, they re-
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ported that the transition from the nonsynchronous state to _ 1 A

the synchronous one is found &t=2.82, and whenb S§+1=NZ [vnsa?
>b., the size evolution of the snapshot attractor exhibits '

on-off intermittency. We will explain this transition behavior

1 . .
with our measuréS, and the ED. If we consider the differ- =N Z {g(a) +kcosey[cot b+ f(a)}(vp)
encev,, betweeny, andy;, such that
1 :
. | | +§ 2 Olwn)®l. (23
Un+1=Yne1~ Yne1=2Zn0n(1—2yp—vp), (18) '

Then, Eq.(23) has a different result compard with the pre-

then, vious case, because the summation in 8) does not have
a common driving. As a result, it seems that one could not
~ 1N 1 N A . deduceS, from the right side. However, we have recognized
S§+1=N 21 (Vpe1)?= N 21 Z2(vh)2(1-2yf—v})2. the crucial property that the value of atfor all i becomes
1= 1=

identical whenv,=0, which will be explained in detail in
the following. That property means that the whole particles
align in a line passing through the reference particle, because
If we consider the limitv.—0 and neglect higher order tané, is the slope of a line connecting position of the refer-
terms =;(v")3 and 3;(v!)* near the transition region, Eq. ence particle to that of thith particle. In Sec. Ill, we have
(19) becomesS, , ;=|z,(1—2y")|S,. Then, we have ob- shown thate* becomes a saddle or a spiral for mast

tained the following relation by taking the logarithm on both V\./hen.e* is a saddle, particles*are rept:lled alo_ng the unstable
sides: direction. However, sincén|\%||<|In]\*||, particles are at-

tracted fast along_ and repelled slowly along, . There-

fore, particles are scattered around along the unstable eigen-
InS, . 1=In|z,(1—2yH)| +InS,. (200 direction after a few iteration, and become a narrow stripe

along a straight line from the reference particle. Wie&nis

i ] ) ) . a spiral, we have shown that the particles aroehdotate
This relation can be interpreted such that the size evolutioR o nd the fixed point without changing the shape of distri-
of the snapshot attractor in th_e Iogarithmip domain is govtion. Figure 5 shows the behavior of particles nefafor
erned by the random walk with a step sizézj(L—2y;)|.  constanté whene* is a saddle or spiral. After particles are
Similarly to Eq.(13) the transverse Lyapunov exponent is scattered along a line, the Jacobian matrix maps the line

passing through the position of the reference particle to an-
other line passing through that of the reference particle.

hL:j dy p(z,y)In|z(1-2y)|, (21)  Therefore, we could approximate dt=cotd:=cotd?
=...=cotd) for $,=0.

This result is consistent with the finding of YOC that the
wherep(z,y) is the invariant probability density. This leads Lyapunov dimension becomes unity on the chaotic side of
to the same transition point which is calculated by YD. Onethe transition. This represents that the ensembléN gfar-
should notice that the random variable is multipliedm-  ticles is embedded in a one-dimensional manifold. Also from
monly to every particle in the summation of E(L9), and  the evolution of the uniformly distributed ensemble, we have
this leads to on-off intermittency &, . found that near the fixed point all the particles are aligned in

a line from the position of the reference particle as shown in
Fig. 6. Therefore, we can write as follows:

(19

B. RZ map
In the case of the RZ map, we consider the case|of S,11=]9(a) +kcosg,[cotd, +f()][S,. (24
=0. From Eq.(4),
vir1+1:g(a)vir1+ 2kcos(¢>n+uin+1/2)sin(uin+1/2) By taking the logarithm on both sides, we find
_ i - i i 5 -
=9(@)vp Tk cospysin{[cotdy+f(a)Jon} InS,.1=In|g(@)+kcosg,[cotd,+f(a)]|+InS,.
— 2k sin g, sirP{[ cot g+ f(a)]o' 2} (29
={g(a)+kcosp,[cotd,+f(a)l}vn+O((vy)?), As a result, Eq(25) shows a random walk process in the

(22) logarithmic domain. The transition point of the size of the
snapshot attractor is determined by the transverse Lyapunov
o . _ ' exponenthg, which is the average step size in E85), as
where cot,=u /v, andu,, ,=[cotd +f(a)lv,,. Therefore,  follows:
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FIG. 5. Evolution of an ensemble of 5000 particles for constant u,

¢ when «=0.3 andk=0.5. Left columns of the three graphs are
initial evolution of the ensemble witlkh=0, where the fixed point

FIG. 6. Snapshot of 5000 particles when=0.3 andk=0.5.

ate* is a saddle. We start with random initial points distributed Initially, particles are distributed in the region0.5<u,<0.5 and

within —0.01<uq/7<0.01 and— 0.01<v(<<0.01 uniformly in or-

—0.5<v(<0.5. (b), (c), and(d) show a fractal distribution of par-

der to show the behavior near the saddle. From upper to loweficles whenn=2080, 2088, and 2092, respectivel) shows a

graphs, the shape of the ensemble stretches along the unstatsi@all area of the snapshot attractor for 2080,2081. . .,

2099 in

manifold as time flows. In contrast to the left ones, the right col-the same graph. In this region particles are aligned in a line for each

umns are that of the ensemble whér 7= and the fixed point is

instant time when particles are close to the origin. Each line stands

spiral. The distribution, which is initially located in a ring, rotates for @ snapshot for a given instant time. Note that in these graphs
around the orlgln with contracting its area. Note that in these graph§oordinates arer, anduy,, i.e., relative displacement from the ref-
coordinates arei, andv,/m, i.e., relative displacement from the €rence particle.

reference particle.

hs= lim—

n~>oﬁ

1
Z In|g(a)+k cosg,[cotb,+f(a)]|. (26)

evoultion of the snapshot attractor into a random walk is at
last resolved by exploiting our modified definition of the size
of the snapshot attractor, which is slightly different from the
previously proposed one. From this success of mapping onto
a random walk, we have obtained a qualitative understanding
why this manifestation of intermittency has the same critical

In Fig. 2, thehg, which is numerically obtained by using the
original map(2), shows the same result bf which is cal-
culated in the case of two particles. In this case the invariant
hyperplane is a subspace satisfyirijg=0 andu,=0 for all

i. By the hyperplane and the previous random walk relation
the existence of on-off intermittency &, is verified. Fur-
thermore, in the plot of the laminar distribution 8f,, the 6
distribution is not affected by the number of particles and
shows the same scaling of the two-particle case, as depicte
in Fig. 7, which shows the consistency of our results.

In P(L)

V. SUMMARY AND DISCUSSION

In this paper, we have considered the mechanism of syn- o |

chronization in a random dynamical system. As a specific
example, we have investigated the random Zaslavsky map it
detail. From the ED of two particles, we have studied the
bifurcation structure of the invariant manifold and found ¢
transcirtical bifurcation between the saddle and stable node
Our results are consistent with those of YOC, but are more
explicit in the perspective of on-off intermittency structure.

———- —3/2 slope
== 2 particles

10 paritcles

~——= 100 particles

o——o 1000 particles

2
InL

FIG. 7. Probability distributiorP(L) of laminar lengthL when

In the case of an ensemble of many particles in the randora=0.3 andk=0.5. We choose the threshold of an event as*10
Zaslavsky map, the long-standing problem to map the siz&he unit of probability is arbitrary.
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